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In  an earlier paper Hall (1961) proposed a simplified model for the vortex core 
formed over a slender delta wing at  incidence by the rolling-up of the shear layer 
that separates from a leading edge. This model enabled an outer inviscid solution 
and an inner viscous solution for the core to be obtained from the equations of 
motion. However the procedure used for the inner solution led to a number of 
defects: in particular, the matching of the inner and outer solutions seemed 
unsatisfactory. In  the present paper the defects are avoided by using a different 
procedure. The first approximation, in the sense of boundary-layer theory, is 
sought. A solution, in special variables, is obtained which is in the form of an 
asymptotic expansion containing inverse powers of the logarithm of a Reynolds 
number. The leading terms of the expansion are computed, and the results 
confirm that the inner and outer solutions are properly matched. 

1. Introduction 
The simplified model of the vortex core proposed by Hall (1961) and adopted 

here is as follows. The core is geometrically slender, the fluid is incompressible, 
and the velocity and pressure fields are steady and axially symmetric. There are 
two distinctive properties: (1) the flow is continuous, i.e. it  includes no vortex 
sheet, so that it must be rotational to allow a convection of vorticity; and (2) 
diffusion of vorticity is confined to a relatively slender inner core, i.e. the kine- 
matic viscosity is small. The latter reduces the problem of solving the Navier- 
Stokes equations for the core to that of obtaining first an inviscid outer solution 
for the convective part-for which the inner core is ignored-and then, using 
this outer solution to specify boundary conditions, obtaining a viscous inner 
solution for the inner core. In  addition to the above properties the velocity and 
pressure fields are, for the outer solution, taken to be conical. 

Given appropriate conditions on the outside edge of the core and zero radial 
velocity on the axis of symmetry, the outer solution is easily obtained explicitly. 
The resulting expressions for the velocity components and the pressure are in 
simple logarithmic form. It can be deduced, by substitution of this solution into 
the full Navier-Stokes equations, that a diffusive viscous inner core must exist. 
This outer solution will be taken as a starting-point in the present paper. 
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For his inner solution Hall (1961) made assumptions of boundary-layer type 
but chose variables and boundary conditions appropriate for finite Reynolds 
numbers and, in addition, made a number of approximations based on the 
boundary conditions. Two of the latter, an Oseen condition of nearly constant 
axial velocity and the use of the outer solution for the radial velocity, were justi- 
fied only a posteriori as being adequate for practical purposes where the kine- 
matic viscosity v is small but not zero. The results were in qualitative agreement 
with experimental results but it was natural to ask whether they could be 
justified more rigorously. Hall’s approach made it difficult to examine the 
limiting behaviour of the solution as v -+ 0, and he was led to conclude that it was 
necessary, even in the limit v = 0, to join the inner and outer solutions at a 
finite rather than infinite value of the ratio of the distance from the axis to the 
square root of the kinematic viscosity, and that this implied that the solution 
remains approximate in the limit v -+ 0, unlike boundary-layer solutions which 
become exact. It is now clear that these conclusions are incomplete and mis- 
leading. 

In  the present paper these drawbacks are removed by using a rigorously mathe- 
matical approach in which the variables and the form of the solution are chosen 
from the start specifically for the limit v .+ 0. The procedure is as follows. First, 
the Navier-Stokes equations are simplified by making approximations of 
boundary-layer type. Next the appropriate independent variables are defined; 
the outer solutionis expressed in terms of these variables and, with this as a guide, 
an asymptotic expansion for the inner solution is set down. The expansion is 
then substituted in the equations of motion and, by equating terms of like 
magnitude, a set of ordinary differential equations is obtained which, in associa- 
tion with appropriate boundary conditions, yields a solution which approaches 
the outer solution with increasing distance from the axis. The leading equations 
of this set have been solved numerically a t  the Royal Aircraft Establishment 
and a selection of the results is tabulated below. 

The limit of vanishing viscosity manifests itself through two non-dimensional 
numbers 5, x defined in equations (9) below, of which 5 depends on the distances 
along and from the axis of symmetry while x depends on distance along the axis. 
The introduction of the number x brings out an unusual complication in that the 
boundary conditions on the inner solution that are set by the outer solution 
themselves depend on x and thus on v ;  moreover, the inner solution is found as 
a series of descending powers of x. In conventional problems of boundary-layer 
or shear-layer type corresponding variables occur, but the boundary conditions 
set by the outer solution are independent of v and the range of validity of the 
inner solution in terms of the variable corresponding to x is much larger than 
in the present case, where x + 00 in the limit v -+ 0. 

The physical implications of the above are equally unusual. The trend x -+ 00 

in the limit v --f 0 corresponds to an approach to infinite velocity and negatively 
infinite pressure along the axis of the vortex core as the viscosity becomes 
vanishingly small. Thus the present model of the core is unrealistic in the 
extreme condition v -f 0, for if viscous effects are sufficiently small they are 
necessarily accompanied in reality by compressibility effects. Of course for 

20-2 
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finite v compressibility effects, which depend on temperature, can be negligible 
while viscous effects are small. 

An earlier, less complete, discussion of the properties of the inner solution 
has already been given by one of us (Stewartson 1961) and forms the basis of 
the present paper. 

2. The approximation of boundary-layer type: the first limiting process 
When the velocity and pressure fields are axially symmetric, the Navier- 

Stokes equations for the steady flow of an incompressible fluid are, in cylindrical 
co-ordinates (r, x), 

( la)  
au aw w -+-+- = 0, 
ax ar r 

where 

u and w are the axial and radial velocity components, v is the circumferential 
velocity component, and p ,  p and v are the pressure, density and kinematic 
viscosity, respectively. 

The velocity components and the pressure in the inviscid outer solution will 
be denoted by ui, v,, w, and pi respectively. The boundary conditions for the 
outer solution are taken to be 

r = 0, wi = 0; r = ax, ui = U ,  vi = V ,  pi = P, (2) 

where r = ux is the conical, outside edge of the core, so that a, U, V and P are 
all constants. With these boundary conditions, equations (1) give, for an in- 
viscid flow in which the velocity and pressure fields are conical, 

ui = U - Ua log (rlax), 

where 

and the slenderness condition (r/x)2 >> 1 has been assumed. The effect on the 
equations (1) of this condition is simply that the terms uawlax and wawlar may 

a = (1+2V2/U2))-1 > 0, 
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be neglected in comparison with the remainder of the terms in (1 d ) .  We shall 
refer to equations (3) as the outer solution. It must break down as r + 0 because 
the viscous terms in equations (1) then become important. In  fact, substitution 
of the outer solution into (1) shows that the viscous terms become important when 

r = O[x(Um/v)-b]. (4) 

For small distances from the axis the outer solution (3) gives 

1 ( 5 )  

1 (6) 

ui = O[Ualog (rlx)],  aui/ar = O( Ua/r),  

ui = O[Ualog* ( r / x ) ] ,  wi = O(Uar/x). 

Now the proper boundary conditions for the viscous inner core are 

r = 0,  at@- = v = w = 0,  

1 and, from (4), 
( r /x )  (Uax/v)+ + co, u + ui, u -+ ui, p -+ pi. 

From the relations ( 5 )  and the boundary conditions (6) orders of magnitude can 
be assigned to the terms in the Navier-Stokes equations (1)  as in boundary-layer 
theory. On equating the magnitudes of viscous and inertia terms it is found that 
v = O( Uar2/x), as might be expected from (4). The differences in magnitude of 
the terms in (1)  are found to depend on two factors, U m / v  and log (r/x). Only 
the first is considered at  this stage. A boundary-layer approximation to equations 
(1)  is made by taking the limit 

U m / v  + 00 with ( r /x )  (Uax/v)* fixed. ( 7 )  

This means that advantage is taken of the fact that when Y is sufficiently small 
the viscous region will be very slender and changes in the radial direction will 
be much more marked than in the axial direction. The resulting equations are 

au aw w -+-+- = 0,  
ax ar r 

v2 l a p  
r par '  
_ - _ _  - 

As usual in boundary-layer theory the equations are still a highly non-linear set 
of partial differential equations : the boundary-layer approximation has reduced 
the order of the equations, by removing the second derivatives with respect to x, 
and has virtually uncoupled one equation from the others. Observe that equa- 
tions (8) include the equations governing the outer solution (3) as the limiting 
case Y = 0, and that the limit ( 7 )  happens to be equivalent to the slenderness. 
condition ( r /x )2  + 0 of the outer solution. 
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3. Derivation of the ordinary differential equations: the second limiting 

The procedure in this section will be to define new independent variables, to 
substitute these into the outer solution, to use the resulting expressions to set 
down an asymptotic expansion for the inner solution and, finally, to substitute 
this asymptotic expansion into equations (8) and collect terms of like magnitude 
to obtain the required ordinary differential equations. 

After trial it  is found that appropriate independent variables for the inner 

process 

r Uaxx 3 , x = log[a(F) ' ] .  
viscous flow are 

C = . ( t )  (9) 

Note that the definition of 6 is different from that of Hall's earlier work in not 
requiring that any boundary be assigned to the viscous region: 5 is chosen 
specifically with the limit of vanishing viscosity in mind; the 'edge ' of the viscous 
region is given by C/xi -+ co, and the edge of the core as a whole by 5 = x i e x .  
Note also that the region where viscous effects are important is of thickness 
6 = O(x*), from equation (4), and is not of unit order of magnitude, as is usual 
with the corresponding boundary-layer variable. The second limiting process of 
the inner solution, to be applied later in this section, is 

x + c o  with x fixed. (10) 

Since x -+ 00 only very slowly as v -+ 0 it  might be expected that for the practical 
application to cases in which v + 0 several terms of an expansion in inverse 
powers of x would be required. 

In  terms of 6 and x the outer solution (3) can be rewritten 

ui = Uax l + - + - ( - l o g ~ + l / a )  , [ ';y ; 1 
[ 431 x 1 wi = Uax' 1 + %x+ 1 (-&log 5+ a+ 1,2a) + ... , 

p i - P  = -;pu2a2x2 1+---+-(-2log5+1+2/a)+ log2 - x [ ; 4x2 



logx 1 1 

2x x X2 x2 where F = 1 + - + - ~ , ( g )  + l x x  ~ ~ ( g )  + - F (5) + . . . , 

G = Go(<) + __ G,(C) + x G2(5) + * .  . , 

H = 4 + ~ , ( g )  + 'y ~ ~ ( 6 )  + - + - ~ , ( g )  + ... , 

10g2x+10gc2(g)+ - c (g)+ ..., c= l + - + p ) + -  X 4x2 x2 x2 

1 

1% x 1 

X 
1 1  

4x x 
1 logx 1 

by an accent, 

6 = 0, F; = Fh = FA = ... = 0, 

Go = G, = G2 = ... = 0,  

gHo = gHl = gH2 = ... = 0, 

6/x* -+ CO, F, + -log{+ l/a, Fz, F3, ..., + 0,  

Go-+ 1, G I - + & ,  G2+-&10g~+$+I/2a,  ..., 
C1+-210gg+1+2/m, c2-+-10gg+++1/a, 

c, -+ log25- (1 + 2fa)  log g ,  .... 

(13) 

i 

If  the expansion (13) is compatible with the equations of motion (8) and the 
solutions for the ' F '9, ' G 's, ' H's and ' C's satisfy the boundary conditions (14), 
these solutions will constitute a valid inner solution for the vortex core. 

Substitution of the expressions (12) in equations (8) gives 

1 

CFaG H G  CHaG a2G lac G 
2 ag zX 231 ag agz g a l  5 2 '  

---=- + 

ac 262 

ac 5 '  X- = -__ 

These equations are exactly equivalent to (8): the second limiting process (10) 
is only now to be applied. It can be seen from the expansion for F in equations 
(13) that the process of taking the limit x -+ co may be interpreted as an ex- 
ploitation of the idea that for sufficiently small values of the kinematic viscosity 
the axial velocity should be nearly constant across the viscous region. 

Substitution of the expansions (13) in equations (15) yields a set of lengthy 
equations in F,, F2, F3, . . . , Go, G,, . . . , etc. If the ' F '9, 'G 's, ' H's and '(7'9, their 



<HA + 2Ho = - CFi, 
cHL+2H2 = iCFi-CFA, ..., 

CHi + 2H,= - CFL9 
\ 

ri+(+C+1/C)F;= $Cc;, pi+(&C+1/C)FL = $CCL-$CF;, 

FL+(+<+ l/C)F; = $CC;-tCl-~CCl+BFi--CFiF;-aCHoF;, ..., 
G:+(&C+1/{)GA-Go/C2 = 0,  Gi+(aC+1/C)G;-G1/C2= -&CGA, 

Gi+(+C+ 1/C)Gi-G2/C2 = -aCFlcA-aHoGo-aCHoG~, ..., 
C; = - 2Gi/& Ci = - 4GoGl/c, C; = - 4G0G2/c, . . . . 

(16) 
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derivatives, and 6 are all supposed to be of unit order of magnitude, and if the 
second limiting process (10) is applied, the terms of the equations will appear in 
descending orders of magnitude. On equating, in turn, the terms of 

OU), 0[(1/x)logxI, O ( l / X )  
and so on, the following set of ordinary differential equations is obtained. 

The self-consistencyof equations (16) shows that the expansion (13) is,as required, 
compatible with the equations of motion. 

Note that the differential equations (16) are derived on the assumption that 
5 = O( l), and the domain y = O( 1) is but a small part, l/x&, of the viscous core. 
On the other hand, equations (16) yield the leading terms in an expansion, in 
descending powers of x, of the solution of equations (8) which include the 
equations for the outer solution as the limiting case v = 0, and a solution of (8) 
is capable of satisfying all the boundary conditions imposed on the outer solu- 
tion as well as conditons on the axis proper for a viscous flow. It may be 
expected, therefore, that the solution of equations (16) can be extended beyond 
g = O(1). This point will be discussed in more concrete terms after the solution 
has been obtained. 

4. The numerical solution 
With the exception of Go and H,,, all the ‘F’ s ,  ‘G’s, ‘ H ’ s  and ‘C’s depend on 

the parameter a as well as g. It is therefore convenient to introduce subsidiary 
functions which are universal functions of g by putting 
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The fourteen universal functions defined specifically here have been deter- 
mined by substituting the expressions (17) into the equations (16) and solving 
the resulting equations simultaneously by the step-by-step method of Runge 
and Kutta with a high-speed digital computer. Since the Runge-Kutta method 
fails at 5 = 0,  because of terms in the equations containing the factor 1/5, the 
computation was begun at a small value of 5 (6 = 0.02). The initial conditions 
were determined by formal integration of the equations and application of the 
boundary conditions at 5 = 0 given in (14). This is straightforward because the 
solution for Go which satisfies all the requisite boundary conditions can be 
expressed analytically by 

Go = 9.4 5e-@,F1(+, 2, $C2) 

where ,F1 is a confluent hypergeometric function, so that, for small 5, Go is 
given by the rapidly converging series 

Go = 4.4 (5-&C3+ ...); 

once Go is known the other universal functions can be determined successively. 
The functions F,,, Go, Gll, G2,, H, and C,, are tabulated here for 0 < 6 < 10 
(table 1). These should be adequate for qualitative comparisons with experi- 
mental results and for some stability calculations. Even if laminar vortex cores 
could be found at large Reynolds numbers, no useful quantitative comparisons 
could be made without a great deal more computation, because the successive 
terms in the expansion (13) for F ,  0, H and C decrease in magnitude only very 
slowly when v =!,= 0. The computed results do, however, confirm the validity of 
the solution, and this is their chief importance. 

It is clear from the expressions (17) that the computation of the universal 
functions of 5 does not complete the solution. The parameters F,,, P3,, 
Gl0, G2,, Clo, C2, and C,, are still to be determined by application of the boundary 
conditions (14) for c / ~ *  3 00. The question of whether the solution is valid for 
c/x* -+ 00 is set aside till the next section. To determine Pl0(&), for example, one 
would write, from the boundary conditions (14) for F, and from (17), 

and one would then compute F', for larger and larger 5 until further increases in 
5 produce no significant change in the difference F,, -log 5. If P,, -log -+ D 
then F,, = D + l/a. This is the procedure usually followed in boundary-layer 
calculations, and there it is sufficient to take the independent variable (which 
corresponds to [/xi) no further than say 4 or 5. It is found here that up to and 
beyond 6 = 10 the difference F,, - log 5 changes appreciably with increasing 5. 
However, the need to extend the computation is avoided by again making use 
of the analytic solution (18) for Go. From the asymptotic form of the confluent 
hypergeometric function the asymptotic solution for Go is 

. . . , where 9 1. 
1 3 15 0 - 1  _ - _ _ _ - -  

0 -  5 2  254 256 
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5 
0.0 

0.2 
0.4 
0-6 
0.8 
1.0 

1.2 
1.4 
1.6 
1.8 
2.0 

2.2 
2.4 
2.6 
2-8 
3.0 

3.2 
3.4 
3.6 
3.8 
4.0 

4-2 
4.4 
4.6 
4.8 
5.0 

5-2 
5.4 
5.6 
5.8 
6.0 

6.2 
6.4 
6.6 
6.8 
7.0 

7.2 
7.4 
7.6 
7.8 
8.0 

8.2 
8.4 
8.6 
8.8 
9.0 

9.2 
9.4 
9.6 
9.8 

10.0 

Li;, 
0~0000 

0~0000 
0.0002 
0.0008 
0-0023 
0.0055 

0.0109 
0.0191 
0.0306 
0.0458 
0.0649 

0.0877 
0.1141 
0.1483 
0.1762 
0.2110 

0-2475 
0-2853 
0-3239 
0.3629 
0.4019 

0.4406 
0.4789 
0.5165 
0.5533 
0.5893 

0-6244 
0.6586 
0.6919 
0.7243 
0.7558 

0.7865 
0-8163 
0.8454 
0.8737 
0.9013 

0.9283 
0.9545 
0.9801 
1.0051 
1.0296 

1-0534 
1.0768 
1-0996 
1.1219 
1.1438 

1.1652 
1.1862 
1.2067 
1.2269 
1.2467 

Go 
0~0000 

0.0884 
0-1755 
0.2600 
0.3409 
0.4171 

0.4879 
0.5528 
0.6115 
0.6640 
0.7103 

0.7507 
0.7858 
0.8156 
0.8410 
0.8626 

0.8807 
0-8959 
0.9087 
0.9194 
0.9284 

0.9360 
0.9424 
0-9479 
0.9527 
0-9568 

0-9603 
0.9635 
0.9662 
0.9687 
0.9708 

0.9728 
0.9745 
0.9761 
0.9776 
0,9789 

0.9801 
0.9812 
0.9822 
0-9831 
0.9840 

0.9848 
0.9855 
0-9862 
0-9868 
0.9874 

0.9880 
0.9885 
0.9890 
0.9894 
0.9898 

GI1 

0~0000 

0*0001 
0*0009 
0.0029 
0.0065 
0.0122 

0.0201 
0.0300 
0.0417 
0-0550 
0.0693 

0.0843 
0.0993 
0.1142 
0.1283 
0.1416 

0.1538 
0.1648 
0.1746 
0.1833 
0.1908 

0.1973 
0.2029 
0.2077 
0.2118 
0.2154 

0.2184 
0.2211 
0.2234 
0-2255 
0.2273 

0-2289 
0.2303 
0.2316 
0.2327 
0.2338 

0.2347 
0.2356 
0.2364 
0.2371 
0.2378 

0.2384 
0-2389 
0.2395 
0.2400 
0.2404 

0.2408 
0.2412 
0.2416 
0.2420 
0.2423 

%I 

0~0000 

0~0001 
0.0009 
0.0029 
0.0065 
0.0123 

0.0201 
0.0300 
0.0419 
0.0554 
0.0701 

0.0857 
0.1017 
0.1179 
0.1339 
0.1496 

0.1649 
0.1797 
0.1941 
0.2080 
0.2214 

0.2346 
0.2474 
0.2600 
0.2724 
0.2847 

0.2968 
0.3087 
0.3205 
0.3322 
0.3437 

0.3551 
0.3664 
0.3775 
0-3885 
0.3993 

0.4100 
0.4205 
0.4308 
0.4411 
0.45 11 

0.4610 
0.4708 
0.4804 
0.4899 
0.4992 

0.5084 
0.5174 
0.5263 
0.5351 
0.5438 

HD 
0~0000 

0~0000 
0-0001 
0.0005 
0.0015 
0-0036 

0.0071 
0.0124 
0.0197 
0.0292 
0.0409 

0.0547 
0.0703 
0.0873 
0.1055 
0.1245 

0.1437 
0-1629 
0.1818 
0.2002 
0.2177 

0.2344 
0-2501 
0.2648 
0.2785 
0.2912 

0.3030 
0.3139 
0.3240 
0.3333 
0.3420 

0.3500 
0.3574 
0.3642 
0.3706 
0.3766 

0.3821 
0.3873 
0.3921 
0.3966 
0.4009 

0.4048 
0-4086 
0.4121 
0.4154 
0.4185 

0-4215 
0.4243 
0.4269 
0.4294 
0.4318 

ell 
0~0000 

0.0078 
0.031 1 
0.0691 
0.1208 
0.1848 

0.2594 
0.3429 
0.4334 
0.5293 
0.6289 

0.7306 
0.8334 
0.9361 
1-0378 
1.1380 

1.2361 
1.3318 
1-4249 
1.5152 
1.6028 

1-6876 
1.7697 
1.8491 
1.9260 
2.0004 

2.0725 
2-1423 
2.2101 
2-2757 
2.3395 

2.4014 
2.4616 
2.5202 
2,5772 
2.6326 

2.6867 
2.7394 
2.7908 
2.8410 
2-8899 

2.9378 
2.9846 
3.0303 
3.0751 
3.1189 

3.1617 
3.2037 
3.2449 
3.2853 
3.3248 

TABLE 1. Leading terms of the inner solution. 
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Substitution of this into equations (16) enables the equations to be formally 
integrated one by one if taken in the appropriate order. The boundary con- 
ditions (14) are applied. For Ho and H,, for which no boundary conditions for 

+ co are specified, the constants of integration are evaluated by comparison 
with the numerical solution a t  9 6 5 < 10. The resulting asymptotic solutions, 
for + 1, are 

1 1  5 
Fl = -logg+-----+..., 

a g z  2c4 

1 5  
F - -+-+ ..., 
- 262 254 

log5 1310gc 0.8005 1 F3 = --____ c2 2c4 

1 3  
G - I----+ ..., c2 2c4 

1 1  9 
GI = -+- +-+ ..., 

4 462 8<4 

0 -  

G, = -+logt;+-+--T-- 1 1 1.883 0.141 

4 2a c4 
3logC; 17logC 1 

1 2logy 2.266 5 +--+..., 
H o = 2 - 5 2 - -  c2 6 

loge 0.632 5 
H, = -+- --+ ..., c2 CZ c4 

1 h g 2 c  210gc 1*133+H,, 1310gg +- 
6, c4 H, = - a - 7  + F  + 

+T+&r6)+..., 0.851 1 2logg 10 

2 2 1  c, = -2log5+1+-----++... ,  
a c2 c4 

1 1  1 c, = -log c+-+-+-+ ..., 2 a 254 

210gc 0.867 1 +- + ... , -~ 
[4 +g4 ac4 

..., 

..., 

.... 

Note that the constant of integration H,, appears in the solution for H, because, 
as is shown by (17), it cannot be evaluated by a comparison with the numerical 
solution until the parameters Gz0, Flo and C,, have been determined. 



316 K.  Stewartson and M .  C. Hall 

By application of the asymptotic solutions (20) instead of the boundary 
conditions (14) all the parameters Flo, Fzo, ..., can now be determined. For 
example instead of (19) we now have, when 5 is large, 

1 1  5 
F10(a) = E;l-log5+~-2-2%4+ ... , 

and it is found that for 9 < 6 < 10 the right-hand side is constant, to an accuracy 
consistent with the accuracy of the computed values of Fll. By combining the 
expressions (17) and (20) and making use of the numerical solution in the range 
9 6 5 < 10 it is found that 

Flo = - 1.0662 + l/a, Fz0 = 0.2500, F30 = - 0.1444+ 1/2a, 

(21) 
GI,  = 0.5000, G,, = - 1.1828+ l/a, 

Clo = - 0.3004 + 2/a, = 0.3498 + l/a, C30 = - 3.0025 - 0*3004/a 

and also H,, = - 2.99. 

It may be observed from the asymptotic solutions (20) that the viscous inner 
solution approaches the inviscid outer solution in an algebraic (or nearly alge- 
braic) rather than exponential manner. 

5. Discussion 
The essential steps have been: (i) to carry out the first limiting process (7) ,  

which is an approximation of the boundary-layer type; (ii) to carry out the second 
limiting process (lo), for which variables and an asymptotic expansion are 
specially chosen, and which leads to a set of ordinary differential equations; 
and (iii) to solve the equations, applying the outer boundary conditions through 
asymptotic solutions for large 5. To complete this account the validity of the 
solution will be discussed and then, as a postscript, some remarks on the relation 
between the present solution and Hall's earlier solution will be added. 

It was pointed out in 4 3 that although the ordinary differential equations (1 6) 
were derived on the assumption that 6 = O( 1) it might nevertheless be expected 
that the computed solution should be valid beyond the domain 5 = O(1). In  9 4 
a numerical solution and its asymptotic form were obtained, so it is now possible 
to consider whether the solution is, in fact, uniformly valid. 

Consider the expansion (13) for F ,  CT, H and C and its asymptotic form for 
large 5 given by the asymptotic solutions (20). For = O(1) the expansion 
satisfies the equations of motion (8), or (15), and satisfies the boundary con- 
ditions on the axis. For larger 6 in the viscous core, that is, for [ = O(X*),  the 
expansion is still asymptotic in form, and it still satisfies the equations of motion 
(8); it also satisfies the requisite boundary conditions at the edge of the viscous 
core, as lJx* + 00. Hence the expansion (13) is valid throughout the viscous core. 

Alternatively, the suitability of the expansion (13) for describing the flow 
throughout the viscous core may be seen as follows. The equations (8), which 
govern the vortex core as a whole, can be solved in two ways. First one can 
develop an expansion in ascending powers of v of which the expressions (3) 
represent the leading term. This expansion contains terms which have algebraic 
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or logarithmic singularities a t  r + 0 and is therefore valid in some range of values 
of r which excludes the origin. Note that the upper limit of the range of validity 
of this expansion is not determined by the slenderness condition ( r /x) ,  Q 1 
mentioned in 5 2: this condition is necessary to reduce equations (1) to (8) but 
is irrelevant to the subsequent argument. Secondly, one can adopt the variables 
5 and x defined in equations (9) and expand in descending powers of x to obtain 
(13). When 5 9 1 some of the terms in this expansion are exponentially small and 
the others are either algebraic or logarithmic. The range of validity, in r, of this 
expansion is bounded above by a function of x. Now let us replace the variables 
r,  x in the first expansion by 6, x and expand it in descending powers of x assuming 

1 4 6 4  X4ex. (22) 

We find that for 6 9 1 the new third expansion differs from the second only by 
terms that are exponentially small. Since the third expansion is convergent if 
the relation (22) holds we conclude that the expansion (13) is valid throughout 
the viscous core and that the f i s t  and second expansions together give a descrip- 
tion of the entire vortex core provided only that x 9 1. Note that while the f i s t  
expansion, which is valid to the edge 6 = x i  ex of the core, can be transformed, for 
1 Q c 4 xi ex, to what is essentially the second expansion, a converse also holds. 
The second expansion (13) can be transformed so that for x4 Q < x*ex it  con- 
verges and can be identified with the first expansion. In  a sense, therefore, the 
solution (13) suffices to describe the entire vortex core. 

It is emphasized that important viscous effects are operative outside the 
domain 5 = O(1). One obvious effect is the reversal of the trend of the circum- 
ferential velocity as the axis is approached (cf. the inviscid solution and figure 1). 
It can be shown from the solution for G that when x is very large aG/ac = 0 a t  
6 + 2x4: the reversal takes place well outside g = O( 1). 

The present solution appears consistent with that given earlier by Hall (1961). 
Hall assumed that in the viscous domain 

u = const. + O(EU), 

where E is small. This Oseen assumption is consistent with the expansion (13) for 
F .  Further, Hall’s expression for E yields B = O(x-1 log 5) in the present notation. 
Now his join with the outer solution is made at some c at the edge of the viscous 
domain and where the Oseen assumption is still valid, for which the conditions 
are c2 9 x and E Q 1 respectively. Thus although one would naturally have to 
make the join at finite 6 for v + 0 one could, as v decreases, make the join at 
larger and larger Q and in the limit v -+ 0 one could make this 5 infinite. The 
earlier solution remains approximate in the limit v -+ 0,  but only because of an 
approximation in the radial velocity. It can also be shown that for large 5 the 
earlier solution for the circumferential velocity is equivalent to that obtained 
by putting the asymptotic solutions (20) for Go, GI and G, in the expression (13) 
for G here. 

There appears to be little difference in the results when the two solutions are 
applied to a practical problem where Y > 0. In  the figure, profiles of axial and 
circumferential velocity obtained from the present solution are superimposed 
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on the earlier corresponding ones. The present solution is, however, easier to  
apply, and the attainment of greater accuracy (by the calculation of extra terms) 
is more straightforward. 
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FIGURE 1. Profiles of axial (u) and circumferential (v) velocity 

for a vortex core at  a h i t e  Reynolds number. 
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